Running audioadapter nodes.
Running audioadapter nodes.  
 
 
#include "config.h"
 
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dlfcn.h>
#include <errno.h>
#include <pthread.h>
#include <poll.h>
#include <getopt.h>
 
 
 
#define MIN_LATENCY         1024
#define CONTROL_BUFFER_SIZE 32768
 
#define DEFAULT_RAMP_SAMPLES (64*1*1024)
#define DEFAULT_RAMP_STEP_SAMPLES 200
 
#define DEFAULT_RAMP_TIME 2000 
#define DEFAULT_RAMP_STEP_TIME 5000 
 
#define DEFAULT_DEVICE "hw:0,0"
 
#define LINEAR "linear"
#define CUBIC "cubic"
#define DEFAULT_SCALE SPA_AUDIO_VOLUME_RAMP_LINEAR
 
#define NON_NATIVE "non-native"
#define NATIVE "native"
#define DEFAULT_MODE NON_NATIVE
 
 
struct buffer {
};
 
struct data {
        const char *plugin_dir;
        uint32_t n_support;
 
 
 
        struct buffer source_buffer[1];
 
        struct buffer control_buffer[1];
 
        int buffer_count;
        bool start_fade_in;
        double volume_accum;
        uint32_t volume_offs;
 
        const char *alsa_device;
 
        const char *mode;
 
        uint32_t volume_ramp_samples;
        uint32_t volume_ramp_step_samples;
        uint32_t volume_ramp_time;
        uint32_t volume_ramp_step_time;
 
        bool running;
        pthread_t thread;
};
 
static int load_handle (
struct data *data, 
struct spa_handle **handle, 
const 
        char *lib, 
const char *name, 
struct spa_dict *info)
 
{
        void *hnd;
        uint32_t i;
        char *path;
 
        if ((path = 
spa_aprintf(
"%s/%s", data->plugin_dir, lib)) == NULL)
 
                return -ENOMEM;
 
        hnd = dlopen(path, RTLD_NOW);
        free(path);
 
        if (hnd == NULL) {
                printf("can't load %s: %s\n", lib, dlerror());
                return -ENOENT;
        }
                printf("can't find enum function\n");
                goto exit_cleanup;
        }
 
        for (i = 0;;) {
 
                if ((
res = enum_func(&factory, &i)) <= 0) {
 
                        break;
                }
                        continue;
                        continue;
 
                                                info, data->support,
                                                data->n_support)) < 0) {
                        printf(
"can't make factory instance: %d\n", 
res);
                        goto exit_cleanup;
                }
                return 0;
        }
        return -EBADF;
 
exit_cleanup:
        dlclose(hnd);
}
 
static int init_data(struct data *data)
{
        const char *str;
        void *iface;
 
        if ((str = getenv("SPA_PLUGIN_DIR")) == NULL)
                str = PLUGINDIR;
        data->plugin_dir = str;
 
        
        data->start_fade_in = true;
        data->volume_accum = 0.0;
        data->volume_offs = 0;
 
        
 
        
        if ((
res = load_handle (data, &handle, 
"support/libspa-support.so",
 
                printf(
"can't get System interface %d\n", 
res);
        }
        data->log = iface;
 
        
        if ((
res = load_handle(data, &handle,
 
                        "support/libspa-support.so",
                printf(
"can't get System interface %d\n", 
res);
        }
        data->system = iface;
 
        
        if ((
res = load_handle(data, &handle,
 
                        "support/libspa-support.so",
 
                printf(
"can't get interface %d\n", 
res);
        }
        data->loop = iface;
                printf(
"can't get interface %d\n", 
res);
        }
        data->control = iface;
 
        if ((str = getenv("SPA_DEBUG")))
                data->log->level = atoi(str);
 
        return 0;
}
 
static int make_node(
struct data *data, 
struct spa_node **node, 
const char *lib,
 
    const char *name, 
const struct spa_dict *props)
 
{
        void *hnd = NULL;
        uint32_t i;
        char *path;
 
        if ((path = 
spa_aprintf(
"%s/%s", data->plugin_dir, lib)) == NULL)
 
                return -ENOMEM;
 
        hnd = dlopen(path, RTLD_NOW);
        free(path);
 
        if (hnd == NULL) {
                printf("can't load %s: %s\n", lib, dlerror());
                return -ENOENT;
        }
                printf("can't find enum function\n");
                goto exit_cleanup;
        }
 
        for (i = 0;;) {
                void *iface;
 
                if ((
res = enum_func(&factory, &i)) <= 0) {
 
                        break;
                }
                        continue;
                        continue;
 
                                             data->n_support)) < 0) {
                        printf(
"can't make factory instance: %d\n", 
res);
                        goto exit_cleanup;
                }
                        printf(
"can't get interface %d\n", 
res);
                        goto exit_cleanup;
                }
                *node = iface;
                return 0;
        }
        return -EBADF;
 
exit_cleanup:
        dlclose(hnd);
}
 
static int get_ramp_samples(struct data *data)
{
        int samples = -1;
        if (data->volume_ramp_samples)
                samples = data->volume_ramp_samples;
        else if (data->volume_ramp_time) {
                samples = (data->volume_ramp_time * 48000) / 1000;
        }
        if (!samples)
                samples = -1;
 
        return samples;
}
 
static int get_ramp_step_samples(struct data *data)
{
        int samples = -1;
        if (data->volume_ramp_step_samples)
                samples = data->volume_ramp_step_samples;
        else if (data->volume_ramp_step_time) {
                
                samples = (data->volume_ramp_step_time / 1000) * (48000 / 1000);
        }
        if (!samples)
                samples = -1;
 
        return samples;
}
 
static double get_volume_at_scale(struct data *data)
{
                return data->volume_accum;
                return (data->volume_accum * data->volume_accum * data->volume_accum);
 
        return 0.0;
}
 
static int fade_in(struct data *data)
{
        printf("fading in\n");
                void *buffer = data->control_buffer->datas[0].data;
                int ramp_samples = get_ramp_samples(data);
                int ramp_step_samples = get_ramp_step_samples(data);
                double step_size = ((double) ramp_step_samples / (double) ramp_samples);
                uint32_t buffer_size = data->control_buffer->datas[0].maxsize;
                data->control_buffer->datas[0].chunk[0].size = buffer_size;
 
                data->volume_offs = 0;
                do {
                        
                        data->volume_accum += step_size;
                        data->volume_offs += ramp_step_samples;
                } while (data->volume_accum < 1.0);
        }
        else {
                uint8_t buffer[1024];
                        printf(
"can't call volramp set params %d\n", 
res);
                }
        }
 
        return 0;
}
 
static int fade_out(struct data *data)
{
        printf("fading out\n");
                int ramp_samples = get_ramp_samples(data);
                int ramp_step_samples = get_ramp_step_samples(data);
                double step_size = ((double) ramp_step_samples / (double) ramp_samples);
 
 
                void *buffer = data->control_buffer->datas[0].data;
                uint32_t buffer_size = data->control_buffer->datas[0].maxsize;
                data->control_buffer->datas[0].chunk[0].size = buffer_size;
 
                data->volume_offs = ramp_step_samples;
                do {
                        
                        data->volume_accum -= step_size;
                        data->volume_offs += ramp_step_samples;
                } while (data->volume_accum > 0.0);
        } else {
                uint8_t buffer[1024];
 
                        printf(
"can't call volramp set params %d\n", 
res);
                }
        }
 
        return 0;
}
 
static void do_fade(struct data *data)
{
                switch (data->control_io.status) {
                        break;
                default:
                        return;
                }
        }
 
        
        if (data->start_fade_in)
                fade_in(data);
        else
                fade_out(data);
 
                data->control_io.buffer_id = 0;
        }
 
        
        data->start_fade_in = !data->start_fade_in;
}
 
static int on_sink_node_ready(void *_data, int status)
{
        struct data *data = _data;
        int runway = (get_ramp_samples(data) / 1024);
 
        
        if (data->buffer_count == 0)
                do_fade(data);
 
        
        data->buffer_count++;
        if (data->buffer_count > (runway * 2))
                  data->buffer_count = 0;
 
        return 0;
}
 
        .ready = on_sink_node_ready,
};
 
static int make_nodes(struct data *data)
{
        uint8_t buffer[1024];
        char value[32];
        float initial_volume = 0.0;
 
 
        
        if ((
res = make_node(data, &data->source_follower_node,
 
                                        "audiotestsrc/libspa-audiotestsrc.so",
                                        "audiotestsrc",
                printf(
"can't create source follower node (audiotestsrc): %d\n", 
res);
        }
        printf("created source follower node %p\n", data->source_follower_node);
 
        
                                .rate = 48000,
                                .channels = 2 ));
                printf(
"can't set format on follower node (audiotestsrc): %d\n", 
res);
        }
 
        
        snprintf(value, sizeof(value), "pointer:%p", data->source_follower_node);
        if ((
res = make_node(data, &data->source_node,
 
                                        "audioconvert/libspa-audioconvert.so",
                printf(
"can't create source adapter node: %d\n", 
res);
        }
        printf("created source adapter node %p\n", data->source_node);
 
        
                printf(
"can't setup source follower node %d\n", 
res);
        }
 
        
        info.channels = 1;
        info.rate = 48000;
                printf(
"can't setup source node %d\n", 
res);
        }
 
        
        if ((
res = make_node(data, &data->sink_follower_node,
 
                                        "alsa/libspa-alsa.so",
                printf(
"can't create sink follower node (alsa-pcm-sink): %d\n", 
res);
        }
        printf("created sink follower node %p\n", data->sink_follower_node);
 
        
        snprintf(value, sizeof(value), "pointer:%p", data->sink_follower_node);
        if ((
res = make_node(data, &data->sink_node,
 
                                        "audioconvert/libspa-audioconvert.so",
                printf(
"can't create sink adapter node: %d\n", 
res);
        }
        printf("created sink adapter node %p\n", data->sink_node);
 
        
 
        
                printf(
"can't setup sink follower node %d\n", 
res);
        }
        printf("Selected (%s) alsa device\n", data->alsa_device);
 
        if (!data->start_fade_in)
                initial_volume = 1.0;
 
        
        info.channels = 1;
        info.rate = 48000;
 
        else
 
 
                printf(
"can't setup sink node %d\n", 
res);
        }
 
                printf(
"can't configure initial volume %d\n", 
res);
        }
 
        
                        &data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) {
                printf(
"can't set io buffers on port 0 of source node: %d\n", 
res);
        }
        printf("set io buffers on port 0 of source node %p\n", data->source_node);
 
 
                          &data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) {
                printf(
"can't set io buffers on port 0 of sink node: %d\n", 
res);
        }
        printf("set io buffers on port 0 of sink node %p\n", data->sink_node);
 
        
        data->position.clock.target_duration = 1024;
        data->position.clock.rate = data->position.clock.target_rate;
        data->position.clock.duration = data->position.clock.target_duration;
                        &data->position, sizeof(data->position))) < 0) {
                printf(
"can't set io position on source node: %d\n", 
res);
        }
                          &data->position, sizeof(data->position))) < 0) {
                printf(
"can't set io position on sink node: %d\n", 
res);
        }
                        &data->position.clock, sizeof(data->position.clock))) < 0) {
                printf(
"can't set io clock on source node: %d\n", 
res);
        }
                          &data->position.clock, sizeof(data->position.clock))) < 0) {
                printf(
"can't set io clock on sink node: %d\n", 
res);
        }
 
                
                        &data->control_io, sizeof(data->control_io))) < 0) {
                        printf("can't set io buffers on control port 1 of sink node\n");
                }
        }
        
 
        
 
        
 
}
 
static void
init_buffer(
struct data *data, 
struct spa_buffer **bufs, 
struct buffer *ba, 
int n_buffers,
{
        int i;
 
        for (i = 0; i < n_buffers; i++) {
                struct buffer *b = &ba[i];
                bufs[i] = &b->buffer;
 
                b->buffer.metas = b->metas;
                b->buffer.n_metas = 1;
                b->buffer.datas = b->datas;
                b->buffer.n_datas = 1;
 
                b->header.seq = 0;
                b->header.pts = 0;
                b->header.dts_offset = 0;
                b->metas[0].data = &b->header;
                b->metas[0].size = sizeof(b->header);
 
                b->datas[0].flags = 0;
                b->datas[0].fd = -1;
                b->datas[0].mapoffset = 0;
                b->datas[0].maxsize = size;
                b->datas[0].data = malloc(size);
                b->datas[0].chunk = &b->chunks[0];
                b->datas[0].chunk->offset = 0;
                b->datas[0].chunk->size = 0;
                b->datas[0].chunk->stride = 0;
        }
}
 
static int negotiate_formats(struct data *data)
{
        struct spa_pod *filter = NULL, *param = NULL;
 
        uint8_t buffer[4096];
        size_t buffer_size = 1024;
 
        
                printf(
"can't set format on source node: %d\n", 
res);
        }
                printf(
"can't set format on source node: %d\n", 
res);
        }
 
                        printf(
"can't set format on control port of source node: %d\n", 
res);
                }
        }
 
        
 
        
        init_buffer(data, data->source_buffers, data->source_buffer, 1, buffer_size);
        printf("allocated and assigned buffer (%zu) to source node %p\n", buffer_size, data->source_node);
        printf("allocated and assigned buffers to sink node %p\n", data->sink_node);
 
                
                init_buffer(data, data->control_buffers, data->control_buffer, 1, CONTROL_BUFFER_SIZE);
                printf("allocated and assigned control buffers(%d) to sink node %p\n", CONTROL_BUFFER_SIZE, data->sink_node);
        }
 
        return 0;
}
 
static void *loop(void *user_data)
{
        struct data *data = user_data;
 
        printf("enter thread\n");
 
        while (data->running) {
        }
 
        printf("leave thread\n");
        return NULL;
 
        return NULL;
}
 
static void run_async_sink(struct data *data)
{
 
                printf(
"got error %d\n", 
res);
        printf("Source node started\n");
                printf(
"got error %d\n", 
res);
        printf("sink node started\n");
 
 
        data->running = true;
        if ((err = pthread_create(&data->thread, NULL, loop, data)) != 0) {
                printf("can't create thread: %d %s", err, strerror(err));
                data->running = false;
        }
 
        printf("sleeping for 1000 seconds\n");
        sleep(1000);
 
        if (data->running) {
                data->running = false;
                pthread_join(data->thread, NULL);
        }
 
 
                printf(
"got error %d\n", 
res);
                printf(
"got error %d\n", 
res);
}
 
static const char *getscale(uint32_t scale)
{
        const char *scale_s = NULL;
 
                scale_s = LINEAR;
                scale_s = CUBIC;
 
        return scale_s;
}
static void show_help(struct data *data, const char *name, bool error)
{
        fprintf(error ? stderr : stdout, "%s [options] [command]\n"
                "  -h, --help              Show this help\n"
                "  -d, --alsa-device       ALSA device(\"aplay -l\" for more info) to play the samples on(default %s)\n"
                "  -m, --mode              Volume Ramp Mode(\"NonNative\"(via Control Port) \"Native\" (via Volume Ramp Params of AudioAdapter plugin)) (default %s)\n"
                "  -s, --ramp-samples      SPA_PROP_volumeRampSamples(Samples to ramp the volume over)(default %d)\n"
                "  -a, --ramp-step-samples SPA_PROP_volumeRampStepSamples(Step or incremental Samples to ramp the volume over)(default %d)\n"
                "  -t, --ramp-time         SPA_PROP_volumeRampTime(Time to ramp the volume over in  msec)(default %d)\n"
                "  -i, --ramp-step-time    SPA_PROP_volumeRampStepTime(Step or incremental Time to ramp the volume over in nano sec)(default %d)\n"
                "  -c, --scale             SPA_PROP_volumeRampScale(the scale or graph to used to ramp the volume)(\"linear\" or \"cubic\")(default %s)\n"
                "examples:\n"
                "adapter-control\n"
                "-->when invoked with out any params, ramps volume with default values\n"
                "adapter-control --ramp-samples=70000, rest of the parameters are defaults\n"
                "-->ramps volume over 70000 samples(it is 1.45 seconds)\n"
                "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000\n"
                "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples\n"
                "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --mode=native\n"
                "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples in native mode\n"
                "adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --mode=native\n"
                "-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in native mode\n"
                "adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --ramp-step-time=5000 --mode=native\n"
                "-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in steps of 5000 nano seconds(5 msec)in native mode\n"
                "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --ramp-step-samples=200 --mode=native\n"
                "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples with a step size of 200 samples in native mode\n"
                "adapter-control --alsa-device=hw:1,0 --scale=linear\n"
                "-->ramps volume on \"hw:1,0\" in linear volume scale, one can leave choose to not use the linear scale here as it is the default\n"
                "adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --scale=cubic\n"
                "-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale\n"
                "adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --mode=native --scale=cubic\n"
                "-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale in native mode\n"
                "adapter-control --alsa-device=hw:1,0 --ramp-time=3000 --scale=cubic --mode=native\n"
                "-->ramps volume on \"hw:1,0\" alsa device over 3 seconds samples with a step size of 200 samples in native mode\n",
                name,
                DEFAULT_DEVICE,
                DEFAULT_MODE,
                DEFAULT_RAMP_SAMPLES,
                DEFAULT_RAMP_STEP_SAMPLES,
                DEFAULT_RAMP_TIME,
                DEFAULT_RAMP_STEP_TIME,
                getscale(DEFAULT_SCALE));
}
 
int main(int argc, char *argv[])
{
        struct data data = { 0 };
 
        
        data.volume_ramp_samples = DEFAULT_RAMP_SAMPLES;
        data.volume_ramp_step_samples = DEFAULT_RAMP_STEP_SAMPLES;
        data.alsa_device = DEFAULT_DEVICE;
        data.mode = DEFAULT_MODE;
        data.scale = DEFAULT_SCALE;
 
        static const struct option long_options[] = {
        { "help",               no_argument,            NULL, 'h' },
        { "alsa-device",        required_argument,      NULL, 'd' },
        { "mode",               required_argument,      NULL, 'm' },
        { "ramp-samples",       required_argument,      NULL, 's' },
        { "ramp-time",          required_argument,      NULL, 't' },
        { "ramp-step-samples",  required_argument,      NULL, 'a' },
        { "ramp-step-time",     required_argument,      NULL, 'i' },
        { "scale",              required_argument,      NULL, 'c' },
        { NULL, 0, NULL, 0}
        };
 
        setlocale(LC_ALL, "");
 
        while ((c = getopt_long(argc, argv, "hdmstiac:", long_options, NULL)) != -1) {
                switch (c) {
                case 'h':
                        show_help(&data, argv[0], false);
                        return 0;
                case 'm':
                                printf("Invalid Mode(\"%s\"), using default(\"%s\")\n", optarg, DEFAULT_MODE);
                        else
                                data.mode = optarg;
                        break;
                case 'c':
                                printf("Invalid Scale(\"%s\"), using default(\"%s\")\n", optarg,
                                                getscale(DEFAULT_SCALE));
                        else
                        break;
                case 'd':
                        data.alsa_device = optarg;
                        break;
                case 's':
                        data.volume_ramp_samples = atoi(optarg);
                        break;
                case 't':
                        data.volume_ramp_time = atoi(optarg);
                        if (!data.volume_ramp_step_time)
                                data.volume_ramp_step_time = DEFAULT_RAMP_STEP_TIME;
                        data.volume_ramp_samples = 0;
                        data.volume_ramp_step_samples = 0;
                        break;
                case 'a':
                        data.volume_ramp_step_samples = atoi(optarg);
                        break;
                case 'i':
                        data.volume_ramp_step_time = atoi(optarg);
                        break;
                default:
                        show_help(&data, argv[0], true);
                        return -1;
                }
        }
 
 
        
        if ((
res = init_data(&data)) < 0) {
 
          return -1;
        }
 
        
        if ((
res = make_nodes(&data)) < 0) {
 
                return -1;
        }
 
        
        if ((
res = negotiate_formats(&data)) < 0) {
 
                return -1;
        }
 
        printf("using %s mode\n", data.mode);
        if (data.volume_ramp_samples && data.volume_ramp_step_samples)
                printf("using %d samples with a step size of %d samples to ramp volume at %s scale\n",
                        data.volume_ramp_samples, data.volume_ramp_step_samples, getscale(data.scale));
        else if (data.volume_ramp_time && data.volume_ramp_step_time)
                printf("using %d msec with a step size of %d msec to ramp volume at %s scale\n",
                        data.volume_ramp_time, (data.volume_ramp_step_time/1000), getscale(data.scale));
 
        run_async_sink(&data);
}
uint32_t int int res
Definition core.h:433
@ SPA_META_Header
struct spa_meta_header
Definition meta.h:37
@ SPA_DATA_MemPtr
pointer to memory, the data field in struct spa_data is set.
Definition buffer.h:43
@ SPA_CONTROL_Properties
SPA_TYPE_OBJECT_Props.
Definition control.h:32
#define SPA_DICT_ITEM_INIT(key, value)
Definition dict.h:49
#define SPA_DICT_INIT(items, n_items)
Definition dict.h:67
SPA_API_GRAPH void spa_graph_port_init(struct spa_graph_port *port, enum spa_direction direction, uint32_t port_id, uint32_t flags)
Definition graph.h:290
static const struct spa_graph_node_callbacks spa_graph_node_impl_default
Definition graph.h:353
SPA_API_GRAPH void spa_graph_node_init(struct spa_graph_node *node, struct spa_graph_state *state)
Definition graph.h:223
SPA_API_GRAPH void spa_graph_node_add(struct spa_graph *graph, struct spa_graph_node *node)
Definition graph.h:268
SPA_API_GRAPH void spa_graph_port_link(struct spa_graph_port *out, struct spa_graph_port *in)
Definition graph.h:317
SPA_API_GRAPH void spa_graph_port_add(struct spa_graph_node *node, struct spa_graph_port *port)
Definition graph.h:302
#define spa_graph_node_process(n)
Definition graph.h:130
SPA_API_GRAPH void spa_graph_node_set_callbacks(struct spa_graph_node *node, const struct spa_graph_node_callbacks *callbacks, void *data)
Definition graph.h:260
SPA_API_GRAPH void spa_graph_init(struct spa_graph *graph, struct spa_graph_state *state)
Definition graph.h:196
int(* spa_handle_factory_enum_func_t)(const struct spa_handle_factory **factory, uint32_t *index)
The function signature of the entry point in a plugin.
Definition plugin.h:222
#define SPA_HANDLE_FACTORY_ENUM_FUNC_NAME
Definition plugin.h:226
SPA_API_PLUGIN size_t spa_handle_factory_get_size(const struct spa_handle_factory *object, const struct spa_dict *params)
Definition plugin.h:192
SPA_API_PLUGIN int spa_handle_get_interface(struct spa_handle *object, const char *type, void **iface)
Definition plugin.h:74
#define SPA_SUPPORT_INIT(type, data)
Definition plugin.h:117
SPA_API_PLUGIN int spa_handle_factory_init(const struct spa_handle_factory *object, struct spa_handle *handle, const struct spa_dict *info, const struct spa_support *support, uint32_t n_support)
Definition plugin.h:198
#define SPA_KEY_LOG_TIMESTAMP
log timestamp type (local, realtime, monotonic, monotonic-raw).
Definition log.h:401
#define SPA_LOG_IMPL(name)
Definition log-impl.h:119
#define SPA_TYPE_INTERFACE_Log
The Log interface.
Definition log.h:68
SPA_API_LOOP void spa_loop_control_enter(struct spa_loop_control *object)
Definition loop.h:313
#define SPA_TYPE_INTERFACE_DataLoop
Definition loop.h:45
#define SPA_TYPE_INTERFACE_Loop
Definition loop.h:43
SPA_API_LOOP int spa_loop_control_iterate(struct spa_loop_control *object, int timeout)
Definition loop.h:321
#define SPA_TYPE_INTERFACE_LoopControl
Definition loop.h:51
SPA_API_LOOP void spa_loop_control_leave(struct spa_loop_control *object)
Definition loop.h:317
#define SPA_NAME_SUPPORT_LOG
A Log interface.
Definition names.h:32
#define SPA_NAME_SUPPORT_LOOP
A Loop/LoopControl/LoopUtils interface.
Definition names.h:34
#define SPA_NAME_SUPPORT_SYSTEM
A System interface.
Definition names.h:37
#define SPA_NAME_AUDIO_ADAPT
combination of a node and an audio.convert.
Definition names.h:79
#define SPA_NAME_API_ALSA_PCM_SINK
an alsa Node interface for playback PCM
Definition names.h:112
SPA_API_NODE int spa_node_set_io(struct spa_node *object, uint32_t id, void *data, size_t size)
Definition node.h:747
SPA_API_NODE int spa_node_port_set_param(struct spa_node *object, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t flags, const struct spa_pod *param)
Definition node.h:780
#define SPA_STATUS_OK
Definition io.h:82
#define SPA_STATUS_HAVE_DATA
Definition io.h:86
#define SPA_TYPE_INTERFACE_Node
Definition node.h:47
#define SPA_VERSION_NODE_CALLBACKS
Definition node.h:244
#define SPA_STATUS_NEED_DATA
Definition io.h:84
SPA_API_NODE int spa_node_port_set_io(struct spa_node *object, enum spa_direction direction, uint32_t port_id, uint32_t id, void *data, size_t size)
Definition node.h:799
#define SPA_STATUS_STOPPED
Definition io.h:88
SPA_API_NODE int spa_node_set_param(struct spa_node *object, uint32_t id, uint32_t flags, const struct spa_pod *param)
Definition node.h:740
SPA_API_NODE int spa_node_port_use_buffers(struct spa_node *object, enum spa_direction direction, uint32_t port_id, uint32_t flags, struct spa_buffer **buffers, uint32_t n_buffers)
Definition node.h:789
SPA_API_NODE_UTILS int spa_node_port_enum_params_sync(struct spa_node *node, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t *index, const struct spa_pod *filter, struct spa_pod **param, struct spa_pod_builder *builder)
Definition utils.h:88
SPA_API_NODE int spa_node_send_command(struct spa_node *object, const struct spa_command *command)
Definition node.h:753
#define SPA_IO_BUFFERS_INIT
Definition io.h:96
SPA_API_NODE int spa_node_set_callbacks(struct spa_node *object, const struct spa_node_callbacks *callbacks, void *data)
Definition node.h:721
#define SPA_NODE_COMMAND_INIT(id)
Definition command.h:49
@ SPA_IO_Clock
area to update clock information, struct spa_io_clock
Definition io.h:40
@ SPA_IO_Position
position information in the graph, struct spa_io_position
Definition io.h:45
@ SPA_IO_Buffers
area to exchange buffers, struct spa_io_buffers
Definition io.h:38
@ SPA_NODE_COMMAND_Pause
pause a node.
Definition command.h:28
@ SPA_NODE_COMMAND_Start
start a node, this makes it start emitting scheduling events
Definition command.h:30
#define SPA_AUDIO_INFO_DSP_INIT(...)
Definition dsp.h:29
#define SPA_AUDIO_INFO_RAW_INIT(...)
Definition raw.h:291
SPA_API_AUDIO_DSP_UTILS struct spa_pod * spa_format_audio_dsp_build(struct spa_pod_builder *builder, uint32_t id, const struct spa_audio_info_dsp *info)
Definition dsp-utils.h:48
spa_audio_volume_ramp_scale
Definition raw.h:270
SPA_API_AUDIO_RAW_UTILS struct spa_pod * spa_format_audio_raw_build(struct spa_pod_builder *builder, uint32_t id, const struct spa_audio_info_raw *info)
Definition raw-utils.h:57
@ SPA_PROP_volumeRampStepSamples
Step or incremental Samples to ramp the volume over.
Definition props.h:96
@ SPA_PROP_minLatency
Definition props.h:53
@ SPA_PROP_device
Definition props.h:47
@ SPA_PROP_live
Definition props.h:58
@ SPA_PROP_volume
a volume (Float), 0.0 silence, 1.0 no attenutation
Definition props.h:67
@ SPA_PROP_volumeRampTime
Time in millisec to ramp the volume over.
Definition props.h:98
@ SPA_PROP_volumeRampStepTime
Step or incremental Time in nano seconds to ramp the.
Definition props.h:99
@ SPA_PROP_volumeRampSamples
Samples to ramp the volume over.
Definition props.h:95
@ SPA_PROP_frequency
Definition props.h:66
@ SPA_PROP_volumeRampScale
the scale or graph to used to ramp the volume
Definition props.h:101
@ SPA_PARAM_PORT_CONFIG_MODE_dsp
dsp configuration, depending on the external format.
Definition port-config.h:28
@ SPA_MEDIA_TYPE_application
Definition format.h:32
@ SPA_PARAM_Format
configured format as SPA_TYPE_OBJECT_Format
Definition param.h:34
@ SPA_PARAM_PortConfig
port configuration as SPA_TYPE_OBJECT_ParamPortConfig
Definition param.h:41
@ SPA_PARAM_Props
properties as SPA_TYPE_OBJECT_Props
Definition param.h:32
@ SPA_PARAM_Buffers
buffer configurations as SPA_TYPE_OBJECT_ParamBuffers
Definition param.h:35
@ SPA_PARAM_PORT_CONFIG_mode
(Id enum spa_param_port_config_mode) mode
Definition port-config.h:37
@ SPA_PARAM_PORT_CONFIG_format
(Object) format filter
Definition port-config.h:40
@ SPA_PARAM_PORT_CONFIG_control
(Bool) enable control ports
Definition port-config.h:39
@ SPA_PARAM_PORT_CONFIG_direction
(Id enum spa_direction) direction
Definition port-config.h:36
@ SPA_AUDIO_CHANNEL_MONO
mono stream
Definition raw.h:161
@ SPA_FORMAT_mediaType
media type (Id enum spa_media_type)
Definition format.h:93
@ SPA_FORMAT_mediaSubtype
media subtype (Id enum spa_media_subtype)
Definition format.h:94
@ SPA_MEDIA_SUBTYPE_control
control stream, data contains spa_pod_sequence with control info.
Definition format.h:85
@ SPA_AUDIO_FORMAT_F32P
Definition raw.h:76
@ SPA_AUDIO_FORMAT_S16
Definition raw.h:92
@ SPA_PARAM_BUFFERS_size
size of a data block memory (Int)
Definition buffers.h:29
@ SPA_AUDIO_VOLUME_RAMP_CUBIC
Definition raw.h:273
@ SPA_AUDIO_VOLUME_RAMP_LINEAR
Definition raw.h:272
SPA_API_POD_BUILDER void * spa_pod_builder_pop(struct spa_pod_builder *builder, struct spa_pod_frame *frame)
Definition builder.h:187
#define SPA_POD_String(val)
Definition vararg.h:94
#define SPA_POD_Bool(val)
Definition vararg.h:44
SPA_API_POD_BUILDER int spa_pod_builder_control(struct spa_pod_builder *builder, uint32_t offset, uint32_t type)
Definition builder.h:515
#define SPA_POD_Id(val)
Definition vararg.h:49
SPA_API_POD_BUILDER void spa_pod_builder_init(struct spa_pod_builder *builder, void *data, uint32_t size)
Definition builder.h:97
SPA_API_POD_ITER int spa_pod_fixate(struct spa_pod *pod)
Definition iter.h:443
#define spa_pod_builder_add_object(b, type, id,...)
Definition builder.h:703
#define SPA_POD_Float(val)
Definition vararg.h:76
SPA_API_POD_BUILDER int spa_pod_builder_push_sequence(struct spa_pod_builder *builder, struct spa_pod_frame *frame, uint32_t unit)
Definition builder.h:504
#define spa_pod_parse_object(pod, type, id,...)
Definition parser.h:586
#define SPA_POD_Int(val)
Definition vararg.h:54
#define SPA_POD_Pod(val)
Definition vararg.h:128
SPA_API_RESULT const char * spa_strerror(int err)
Definition result.h:61
SPA_API_STRING bool spa_streq(const char *s1, const char *s2)
Definition string.h:51
#define SPA_TYPE_INTERFACE_System
a collection of core system functions
Definition system.h:50
#define SPA_TYPE_INTERFACE_DataSystem
Definition system.h:52
@ SPA_TYPE_OBJECT_ParamPortConfig
Definition type.h:92
@ SPA_TYPE_OBJECT_ParamBuffers
Definition type.h:88
@ SPA_TYPE_OBJECT_Props
Definition type.h:86
@ SPA_TYPE_OBJECT_Format
Definition type.h:87
#define spa_aprintf(_fmt,...)
Definition defs.h:528
#define spa_zero(x)
Definition defs.h:508
#define SPA_FRACTION(num, denom)
Definition defs.h:136
@ SPA_DIRECTION_INPUT
Definition defs.h:107
@ SPA_DIRECTION_OUTPUT
Definition defs.h:108
Audio information description.
Definition raw.h:282
A Buffer.
Definition buffer.h:110
Chunk of memory, can change for each buffer.
Definition buffer.h:59
Data for a buffer this stays constant for a buffer.
Definition buffer.h:78
const struct spa_dict_item * items
Definition dict.h:56
uint32_t version
Definition plugin.h:123
IO area to exchange buffers.
Definition io.h:80
The position information adds extra meaning to the raw clock times.
Definition io.h:316
Node callbacks.
Definition node.h:242
struct spa_pod_builder_state state
Definition builder.h:67
uint32_t size
Definition pod.h:44
Extra supporting infrastructure passed to the init() function of a factory.
Definition plugin.h:98